2024
Journals
Brinkhoff, J., Clarke, A., Dunn, B. W., & Groat, M., (2024). Analysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather data. Agricultural and Forest Meteorology, 353, 110055. https://doi.org/10.1016/j.agrformet.2024.110055
Cimoli, E., Lucieer, A., Malenovský, Z., Woodgate, W., Janoutová, R., Turner, D., Haynes, R. S., & Phinn, S. (2024). Mapping functional diversity of canopy physiological traits using UAS imaging spectroscopy. Remote Sensing of Environment, 302, 113958.
Driscoll, D.A., Macdonald, K.J., Gibson, R.K. et al. (2024) Biodiversity impacts of the 2019–2020 Australian megafires. Nature 635, 898–905, https://doi.org/10.1038/s41586-024-08174-6
Francis RJ; Kingsford RT; Moseby K; Read J; Pedler R; Fisher A; McCann J; West R, 2024, 'Tracking landscape scale vegetation change in the arid zone by integrating ground, drone and satellite data', Remote Sensing in Ecology and Conservation, 10, pp. 374 - 387, http://dx.doi.org/10.1002/rse2.375
Le Breton, T., Lyons, M., Ignacio, B., Auld, T. D., & Ooi, M. (2024). Conceptual model for assessing a science–policy–management framework for threat mitigation. Conservation Biology, e14413.
Mo, M., Meade, J., Roff, A., Timmiss, L.A., Gibson, R.K., Welbergen, J.A. (2024) Impact assessment of the Australian 2019–20 megafires on roost sites of the vulnerable grey-headed flying-fox (Pteropus poliocephalus), Global Ecology and Conservation, 50, art. no. e02822, https://doi:10.1016/j.gecco.2024.e02822
Nolan, R.H., Gibson, R.K., Cirulis, B., Hoyland, B., et al (2024) Incorporating burn heterogeneity with fuel load estimates may improve fire behaviour predictions in south-east Australian eucalypt forest, International Journal of Wildland Fire 33, WF22179; https://doi:10.1071/WF221799
Nursamsi, I., Phinn, S. R., Levin, N., Luskin, M. S., & Sonter, L. J. (2024). Remote sensing of artisanal and small-scale mining: A review of scalable mapping approaches. Science of the Total Environment, 175761.
Nursamsi, I., Sonter, L. J., Luskin, M. S., & Phinn, S. (2024a). Feasibility of multi-spectral and radar data fusion for mapping Artisanal Small-Scale Mining: A case study from Indonesia. International Journal of Applied Earth Observation and Geoinformation, 132, 104015.
Suarez, L. A., Robertson-Dean, M., Brinkhoff, J., & Robson, A. (2024). Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition. Precision Agriculture. https://doi.org/10.1007/s11119-023-10083-z
Torgbor, B. A., Sinha, P., Rahman, M. M., Robson, A., Brinkhoff, J., & Suarez, L. A. (2024). Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales. Remote Sensing, 16(22), 4170. https://doi.org/10.3390/rs16224170
Xie, Z., Game, E. T., Phinn, S. R., Adams, M. P., Bayarjargal, Y., Pannell, D. J., Purevbaatar, G., Baldangombo, B., Hobbs, R. J., & Yao, J. (2024). A scalable big data approach for remotely tracking rangeland conditions. Communications Earth & Environment, 5(1), 349.
Conference Papers/Posters
Duckworth, W., Horn, G., Danaher, T., and Mawbey, H., (2024) Terrestrial Laser Scanning – NSW Field Program, Joint Remote Sensing Research Program, NSW Department of Climate Change, Energy, Environment and Water, Remote Sensing and Regulatory Mapping Team. Poster.
Fisher, A., Sutton, A, Com, Q (2024) Relating NDVI and fractional vegetation cover in satellite and drone images for investigating arid zone plant composition. Advancing Earth Observation Forum 2024, Adelaide, 10-12 September. http://dx.doi.org/10.13140/RG.2.2.28204.07049
Greco, M., (2024) Exploring Queensland’s Woody Landscape: Structural insights from GEDI LiDAR. Poster.
Mawbey, H., Danaher, T., (2024) NVR mapping methods. Magazine.
Mitchell, A.L., Chang, H-C., Dail, J. and Horn, G. (2024). Multi-sensor fusion for monitoring woody vegetation change in Eastern Australia. Joint PI Meeting of JAXA Earth Observation Missions FY2024, Tokyo, Japan, 18-22 November. Poster.
Mitchell. A., Danaher. T., and Gibson. R.. Detecting and Monitoring of Woody Regrowth using Time-Series of Optical and/or Radar Data. Poster presented at Advancing Earth Observation Forum 2024.
Phinn, S. R., Scarth. P., Lyons, M., Dail, J., Tindall, D., Denham, R., Mawbey, H., Ward, M., Woodgate, W., Devereux, T., and Danaher, T., (2024) How to compare satellite derived “vegetation” property maps from local to continental to global scales – The Australian Case. Poster.
Valero, L. P., (2024) D-SLATS: A Deep Learning Framework for Advanced Landscape Change Detection in Queensland with Sentinel-2