2024

Journals

  • Brinkhoff, J., Clarke, A., Dunn, B. W., & Groat, M., (2024). Analysis and forecasting of Australian rice yield using phenology-based aggregation of satellite and weather data. Agricultural and Forest Meteorology, 353, 110055. https://doi.org/10.1016/j.agrformet.2024.110055

  • Cimoli, E., Lucieer, A., Malenovský, Z., Woodgate, W., Janoutová, R., Turner, D., Haynes, R. S., & Phinn, S. (2024). Mapping functional diversity of canopy physiological traits using UAS imaging spectroscopy. Remote Sensing of Environment, 302, 113958.

  • Driscoll, D.A., Macdonald, K.J., Gibson, R.K. et al. (2024) Biodiversity impacts of the 2019–2020 Australian megafires. Nature 635, 898–905, https://doi.org/10.1038/s41586-024-08174-6

  • Francis RJ; Kingsford RT; Moseby K; Read J; Pedler R; Fisher A; McCann J; West R, 2024, 'Tracking landscape scale vegetation change in the arid zone by integrating ground, drone and satellite data', Remote Sensing in Ecology and Conservation, 10, pp. 374 - 387, http://dx.doi.org/10.1002/rse2.375

  • Le Breton, T., Lyons, M., Ignacio, B., Auld, T. D., & Ooi, M. (2024). Conceptual model for assessing a science–policy–management framework for threat mitigation. Conservation Biology, e14413.

  • Mo, M., Meade, J., Roff, A., Timmiss, L.A., Gibson, R.K., Welbergen, J.A. (2024) Impact assessment of the Australian 2019–20 megafires on roost sites of the vulnerable grey-headed flying-fox (Pteropus poliocephalus), Global Ecology and Conservation, 50, art. no. e02822, https://doi:10.1016/j.gecco.2024.e02822

  • Nolan, R.H., Gibson, R.K., Cirulis, B., Hoyland, B., et al (2024) Incorporating burn heterogeneity with fuel load estimates may improve fire behaviour predictions in south-east Australian eucalypt forest, International Journal of Wildland Fire 33, WF22179; https://doi:10.1071/WF221799      

  • Nursamsi, I., Phinn, S. R., Levin, N., Luskin, M. S., & Sonter, L. J. (2024). Remote sensing of artisanal and small-scale mining: A review of scalable mapping approaches. Science of the Total Environment, 175761.

  • Nursamsi, I., Sonter, L. J., Luskin, M. S., & Phinn, S. (2024a). Feasibility of multi-spectral and radar data fusion for mapping Artisanal Small-Scale Mining: A case study from Indonesia. International Journal of Applied Earth Observation and Geoinformation, 132, 104015.

  • Suarez, L. A., Robertson-Dean, M., Brinkhoff, J., & Robson, A. (2024). Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition. Precision Agriculture. https://doi.org/10.1007/s11119-023-10083-z

  • Torgbor, B. A., Sinha, P., Rahman, M. M., Robson, A., Brinkhoff, J., & Suarez, L. A. (2024). Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales. Remote Sensing, 16(22), 4170. https://doi.org/10.3390/rs16224170

  • Xie, Z., Game, E. T., Phinn, S. R., Adams, M. P., Bayarjargal, Y., Pannell, D. J., Purevbaatar, G., Baldangombo, B., Hobbs, R. J., & Yao, J. (2024). A scalable big data approach for remotely tracking rangeland conditions. Communications Earth & Environment, 5(1), 349.

Conference Papers/Posters

  • Duckworth, W., Horn, G., Danaher, T., and Mawbey, H., (2024) Terrestrial Laser Scanning – NSW Field Program, Joint Remote Sensing Research Program, NSW Department of Climate Change, Energy, Environment and Water, Remote Sensing and Regulatory Mapping Team. Poster.

  • Fisher, A., Sutton, A, Com, Q (2024) Relating NDVI and fractional vegetation cover in satellite and drone images for investigating arid zone plant composition. Advancing Earth Observation Forum 2024, Adelaide, 10-12 September. http://dx.doi.org/10.13140/RG.2.2.28204.07049

  • Greco, M., (2024) Exploring Queensland’s Woody Landscape: Structural insights from GEDI LiDAR. Poster.

  • Mawbey, H., Danaher, T., (2024) NVR mapping methods. Magazine.

  • Mitchell, A.L., Chang, H-C., Dail, J. and Horn, G. (2024). Multi-sensor fusion for monitoring woody vegetation change in Eastern Australia. Joint PI Meeting of JAXA Earth Observation Missions FY2024, Tokyo, Japan, 18-22 November. Poster.

  • Mitchell. A., Danaher. T., and Gibson. R.. Detecting and Monitoring of Woody Regrowth using Time-Series of Optical and/or Radar Data. Poster presented at Advancing Earth Observation Forum 2024.

  • Phinn, S. R., Scarth. P., Lyons, M., Dail, J., Tindall, D., Denham, R., Mawbey, H., Ward, M., Woodgate, W., Devereux, T., and Danaher, T., (2024) How to compare satellite derived “vegetation” property maps from local to continental to global scales – The Australian Case. Poster.

  • Valero, L. P., (2024) D-SLATS: A Deep Learning Framework for Advanced Landscape Change Detection in Queensland with Sentinel-2

Next
Next

2023